skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarihi, Amin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hardware Trojans (HTs) are undesired design or manufacturing modifications that can severely alter the security and functionality of digital integrated circuits. HTs can be inserted according to various design criteria, e.g., nets switching activity, observability, controllability, etc. However, to our knowledge, most HT detection methods are only based on a single criterion, i.e., nets switching activity. This paper proposes a multi-criteria reinforcement learning (RL) HT detection tool that features a tunable reward function for different HT detection scenarios. The tool allows for exploring existing detection strategies and can adapt new detection scenarios with minimal effort. We also propose a generic methodology for comparing HT detection methods fairly. Our preliminary results show an average of 84.2% successful HT detection in ISCAS-85 benchmarks. 
    more » « less
  2. Network-on-chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-chips (SoCs). However, the shared communication resources in an NoC platform, e.g., channels, buffers, and routers, might be used to conduct attacks compromising the security of NoC-based SoCs. Most of the proposed encryption-based protection methods in the literature require leaving some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This reveals the source/destination information of the packet to malicious routers, which can be exploited in various attacks. For the first time, we propose the idea of secure, anonymous routing with minimal hardware overhead to encrypt the entire packet while exchanging secure information over the network. We have designed and implemented a new NoC architecture that works with encrypted addresses. The proposed method can manage malicious and benign failures at NoC channels and buffers by bypassing failed components with a situation-driven stochastic path diversification approach. Hardware evaluations show that the proposed security solution combats the security threats at the affordable cost of 1.5% area and 20% power overheads chip-wide. 
    more » « less